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ABSTRACT OF THESIS

Context-Aware Debugging for Concurrent Programs

Concurrency faults are difficult to reproduce and localize because they usually
occur under specific inputs and thread interleavings. Most existing fault localization
techniques focus on sequential programs, but fail to identify faulty memory access
patterns across threads, which are usually the root causes of concurrency faults.
Moreover, existing techniques for sequential programs cannot be adapted to identify
faulty paths in concurrent programs. While concurrency fault localization techniques
have been proposed to analyze passing and failing executions and identify faulty ac-
cess patterns, they primarily focus on using statistical analysis. We present a novel
approach to fault localization using feature selection techniques from machine learn-
ing. Our insight is that the concurrency access patterns obtained from a large volume
of coverage data generally constitute high dimensional data sets, yet existing statis-
tical analysis techniques for fault localization are usually applied to low dimensional
data sets. Each additional failing or passing run can provide more diverse informa-
tion, which can help localize faulty concurrency access patterns in code. The patterns
with maximum feature diversity information can point to the most suspicious pattern.
We then apply data mining technique and identify the interleaving patterns that are
occurred most frequently and provide the possible faulty paths. We also evaluate
the effectiveness of fault localization using test suites generated from different test
adequacy criteria. We have evaluated Cadeco on 10 real-world multi-threaded Java
applications. Results indicate that Cadeco outperforms state-of-the-art approaches
for localizing concurrency faults.

KEYWORDS: Concurrent Program, Fault Localization, Debugging, Machine Learn-
ing, Data Mining, Empirical Study
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Chapter 1 Introduction

The advent of multicore processors has greatly increased the prevalence of concur-
rent software. Not surprisingly, failures due to concurrency faults occur prolifically in
deployed concurrent systems. Debugging software after it has failed is an expensive
part of the software-development process. Finding the fault that has caused the fail-
ure in concurrent programs is very challenging because a concurrency fault typically
involves a particular interleaving of multiple threads; this reduces understandability.
In addition, when a concurrency fault is exposed, it is often difficult to reproduce the
fault due to the nondeterminism of concurrent programs.

Over the past decades, there has been a great deal of work on detecting particular
types of concurrency faults based on access patterns, such as data races [6,12,32,42],
atomicity violations [4,13,52,60,66|, and deadlock [3,31,55]. However, while these
techniques may report many patterns, only some of which might directly identify the
fault. In addition, these methods do not presently have any way to rank or prioritize
the patterns.

Spectrum-based fault localization techniques [2,9, 30,51, 67| have been used to
automatically identify and rank likely faulty locations. Wong et al. provide a sur-
vey [64]. These techniques use dynamic information obtained from failing and passing
test executions (called spectra) to compute suspiciousness scores for each coverage
target. The underlying intuition of these methods is that similar test cases generate
similar execution spectra while dissimilar test cases generate very different types of
execution spectra. The runtime information, e.g., statements executed and branches
taken, of a program is collected with respect to a set of positive test cases (termed
passing runs) and negative test cases (termed failing runs). The premise is that data
analysis of two different types of spectra may pinpoint the location of the bug.

However, most existing spectrum-based fault localization techniques focus on se-
quential programs that rank program elements such as statements. Falcon [47] and
CCI [29] are the most closely related work on applying spectrum-based fault localiza-
tion techniques to concurrent programs. Falcon combines pattern identification with
statistical rankings of suspiciousness of those patterns. CCI leverages statistical de-
bugging and views interleavings as predicates which are collected in the runtime and
analyzed to find the location of the concurrency faults. While these techniques have
shown promise, effectively and efficiently locating faults still remains a challenging
problem. In our experiment (Section 3.4.4), Falcon yields inaccurate results in 30%
of its subject programs.

While precisely localizing concurrency bugs in high dimensional data is challeng-
ing, additional challenges arise as existing techniques do not provide sufficient con-
textual information for debugging. The contextual information, such as inter-thread
control and data dependency, is often useful for understanding how highly ranked
patterns lead to program failures. Existing research [9,28| has shown that execution
paths can help isolate bugs more precisely by providing more information about the
context in which bugs occur. For example, Jiang et al. [28| propose techniques to
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Figure 1.1: The overview of our Cadeco framework

first identify buggy predicates, and then predict correlations and control flow paths
that connect the buggy predicates and correlated predicts for better understanding
the bugs. However, these techniques focus on sequential software and have not con-
sidered concurrent software systems.

Given the foregoing discussion, the overall goal of our research is to provide an
automated context-aware debugging framework for concurrent programs, Cadeco,
that can 1) report a ranked list of interleaving patterns that are likely to induce the
concurrency failure, and 2) provide intra- and inter-thread control-flow paths that
connect the interleaving patterns to help developers better diagnose the concurrency
failure.

Figure 1.1 provides an overview of Cadeco. First, it executes existing test inputs
to obtain both passing and failing executions. During the execution, we randomly
permute thread interleavings in order to generate execution traces with diverse pat-
terns. Next, it leverages feature selection techniques used in machine learning to
identify interleaving patterns that are likely to cause the failure. In the third step,
Cadeco applies frequent pattern pattern mining technique on the failing execution
traces to identify interleaving patterns that are frequently executed. Finally, Cadeco
traverses the program’s inter-thread inter-procedural control flow graph (IICFG) to
identify faulty control flow paths that connect the faulty interleaving patterns and
frequent executed patterns.

Cadeco differs from existing spectrum-based concurrency fault localization tools |29,
47] in several aspects. First, existing techniques obtain traces from random interleav-
ings, but the quality of interleavings must be considered to ensure the diversity of
covered patterns among failing and passing executions. We leverage the inter-thread
def-use coverage criterion [38] for creating thread interleavings. We also investigate
the effects of using an interleaving reduction strategy on the effectiveness of fault
localization techniques. Second, standard feature selection techniques often identify
features that can differentiate instances of different classes, but do not differentiate
features that characterize one class from those that characterize another. Cadeco
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employs a constrained feature selection technique [35] that associates the patterns to
particular failing or passing cases.

Cadeco also differs from existing context-aware debugging techniques |9, 28, 45].
First, existing techniques for sequential programs cannot be adapted to identify faulty
paths in concurrent programs, because they consider the control and data flow across
multiple threads. Second, Griffin [45] is the only work that considers using contextual
information to improve comprehension of concurrency bugs. Griffin clusters the faulty
concurrency patterns and outputs the grouped patterns along with suspicious meth-
ods. However, like the techniques for sequential programs, Griffin reports a list of
methods around the faulty pattern but does not provide inter-thread level execution
context.

Cadeco has been implemented as a software tool using Soot instrumentation [56],
Weka machine learning tool [19] and SPMF [57]. To evaluate Cadeco, we conducted
two experiments on 10 popular Java applications and known concurrency failures.
The goal of our first experiment is to evaluate the feature selection techniques on
concurrency bug localization. Our experimental results show that Cadeco can accu-
rately rank faulty concurrency patterns in the top-2 for nine out of 10 applications.
When compared to Falcon, Cadeco has the same level of accuracy as Falcon and
is more accurate for two out of 10 subjects. Our results also show that execution
trace reduction causes negligible impact on the effectiveness of the fault-localization
technique. The second experiment evaluates the effectiveness and efficiency of our
context-aware debugging technique. The results show that the faulty control flow
paths reported by Cadeco are accurate and useful for understanding concurrency
failures.

In summary, this thesis makes the following contributions:

e We develop a spectrum-based fault localization technique for concurrent pro-
grams using feature selection techniques.

e We develop a context-aware debugging technique for concurrent programs using
a novel combination of feature selection, data mining, and control flow graph
analysis.

e We implement out techniques in a tool, Cadeco, and conduct empirical studies
to demonstrate Cadeco’s effectiveness and efficiency in real-world applications.

In the next chapter, we present background and use examples to illustrate the
main technical challenges and our corresponding solutions. We then describe our
techniques on concurrency fault localization in Chapter 3. Next, we present our
detailed algorithms on context-aware debugging in Chapter 4. Finally, we give our
conclusions and future work in Chapter 5.
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Chapter 2 Background and Motivation

2.1 Background

In this section, we provide background on spectrum-based fault localization and fea-
ture selection. We then show two motivating examples.

2.1.1 Spectrum-based Fault Localization Techniques

Spectrum-based Fault Localization (SBFL) is one of the most popular approaches for
locating software faults because of its simplicity and effectiveness [65]. SBFL utilizes
the execution result (passing or failing) of each test case and the corresponding cov-
erage information to evaluate the likelihood of each program entity (e.g., statements,
basic blocks, methods, files) being faulty. A SBFL technique returns a ranked list of
program entities sorted by their suspiciousness scores. Developers can then manually
inspect program elements, starting from the most suspicious element until the root
cause of the fault is identified.

Different formulas for computing the suspiciousness scores have been proposed
based on heuristics [30,67]. A well-known statistics-based formula is used by Taran-
tula [30]. Tarantula computes the suspiciousness score of a program element e as
follows:

" (e)

. . . TLf
Suspicious(e) = I, o

Here, ny() is the number of failing executions that cover a program element e and
Np(ey is the number of passing executions that cover e.

2.1.2 SBFL for Concurrent Programs

The most closely related approach that uses spectrum-based fault localization for
concurrent programs is Falcon [47]|. Falcon first collects shared memory access pat-
terns between threads during program executions and then outputs a set of patterns
ranked by suspiciousness. Falcon views each access pattern as a program entity e and
uses the Tarantula formula to compute the suspiciousness scores.

Our works studies an alternative approach to localizing concurrency faults. Since
concurrency access patterns in the coverage generally involve high dimensional data,
we hypothesize that the feature selection methods in machine learning may yield
more accurate results compared to the statistical analysis approach. For example,
the data used in the Tarantula formula involves only three dimensions: patterns,
failing executions, and passing executions.

There has been some research on using feature selection for fault localization [35,
49]. For example, Roychowdhury et al. [49] applied feature selection methods to
localize faults in seven programs and the results were more precise than statistical
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analysis methods. However, existing techniques focus on sequential programs and
have not studied the cost-effectiveness of fault localization in concurrent programs.

2.1.3 Feature Selection Techniques

Machine learning algorithms often deal with data sets that are characterized in high-
dimensional feature space. High-dimensional feature space may cause certain learning
algorithms to perform poorly [11] due to the exponential increase in volume associated
with adding extra dimensions, a phenomenon known as the “curse of dimensionality”.

Therefore, machine learning algorithms are often evaluated in reduced feature
spaces. Toward that end, an important technique is to identify useful features and
discard irrelevant and redundant ones; this process is called feature selection [5].

Feature selection is often classified into three categories: filter, wrapper, and
embedded. Filter feature selection algorithms estimate a score for each feature based
on a statistical measure. Features with scores greater than a predefined threshold
are included in the output of a filter feature selection algorithm. In our study, we
consider the following algorithms [63|: Chi-Square Attribute evaluation (CH), Gain-
Ratio Attribute evaluation (GR), Information-Gain Attribute evaluation (IG), Relief
Attribute evaluation (RF), and Symmetrical Uncertainty Attribute evaluation (SU).
The wrapper algorithm selects a subset of features using a learning algorithm, which
is somewhat similar to the model selection process. The wrappers usually perform
better as the target learning algorithm is used to select the features. However, it
becomes computationally expensive when the dimensions of the data sets are large.
The embedded algorithm selects features during the learning processes, typically in
an iterative fashion. Decision tree is a classic example of this approach.

2.1.4 Concurrency Bug Patterns

Cadeco considers three types of concurrency bugs — order violations, atomicity vio-
lations, and deadlock — three of the most important types of concurrency bugs [39].
An order violation occurs when a pair of memory accesses between two threads, in
which one of the memory accesses is a write, leads to unintended program behavior.
An atomicity violation occurs when a set of accesses in an atomic region is interfered
with by other accesses in a different thread, and that interference leads to unintended
program behavior. A deadlock occurs when one or more threads block forever wait-
ing for a synchronization event that will never happen. There has been research
on identifying concurrency violation patterns [41,46,54|. The common patterns are
summarized in Table 2.1. The first three patterns involve order violations, the 4 to
the 8 patterns are atomicity violations, and the remaining patterns are deadlocks.

To illustrate, Figure 2.1 shows snippets from the ArrayList class of the Java
Collection Library. An atomicity violation occurs when the program executes in
order 2—3—13—14—4—7—8. In lines 2-3, the program retrieves size of ¢ and
initializes an array of Object with the size. However, in lines 13-14, the array and
size are increased by the addAl1l method. Then, in lines 4-9, the increased array is
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Table 2.1:

Memory-access patterns

1D | Pattern Description

1 | (Ry, Wy) Unexpected value is written

2 | (Wy, Ry) Unexpected value is read

3 |(Wy, Wy) The result of remote write is lost
4 | (Ry, Wq, Ry) Modifies local read

5 [(Wy1, Wy, Ry) | Modifies local read

6 |(Wy, Rg, Wy) |Modifies local write

7 | (Ri, Wy, Wy) | The result of remote write is lost
8 | (Wi, Wy, Wy) |The result of remote write is lost
9 | (wait, wait) deadlock

10 | (wait, notify)  |deadlock

11 | (wait, notifyAll) | deadlock

Thread 1

public ArrayList(Collection c) {
size = c.size(); // write
array = new Object[sizel;
c.toArray (array);

// write

public Object[] toArray(Object all) {
copyarray (array, 0, a, 0, size); // read
return a;

©COND TR WN R

-

Thread 2

Object[] a = c.toArray();
int numNew = a.length;

return numNew!=0;
16. }

. boolean addAll(Collection c) {

copyarray(a, O, array, size, numNew); // write
size += numNew; // read, write

Figure 2.1: An real concurrency bug from the ArrayList class of the Java Collection Library

Table 2.2: Patterns associated with the scores computed by a feature selection method

Pattern E1 | E2 | E3 | E4 | Score
size: (W2, W R") x | x | 1.0
size: (R7, W) x| % 0.33
array: (R7, W13) k| % 0.33
array: (W R") x | *x | *x |0.66
Result P |P |F |F

copied to array of Object a, and thus the program may crash with an exception. In
this example, the bug involves a write-write-read (W;WyR;) pattern (i.e., the write
access is from Thread 1, the write access is from Thread 2, and the read access is
from Thread 1), and the access order is 2—14—7. The second pattern involves array:
write-read (WoR;) pattern (i.e., the write is from Thread 2, and the read access is
from Thread 1), and the access order is 13—7.

Cadeco first employs the algorithm in Unicore [46] that can detect both order and
atomicity violations using memory-access patterns. The technique monitors memory
accesses with a fixed-sized window [47] and combines the accesses into patterns. In
addition, Cadeco detects deadlock patterns by monitoring wait — notify synchroniza-
tion operations, including wait, notify, and notifyAll.
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Table 2.2 shows the results of four executions and the ranking of identified concur-
rency patterns. The first column shows all concurrency violation patterns identified
from the four executions. Columns 2-5 list all four executions. If a pattern appears
in an execution, the cell is marked with *. For example, (W?, W4 R") pattern for
shared variable size appears in executions 3 and 4; the superscript indicates the
line number. The last row indicates the result of each execution (passing or failing).
The last column reports the feature selection score for each pattern after applying
a feature selection technique. As the table shows, the first pattern has the highest
score followed by the fourth pattern. The two patterns are the root causes of the
concurrency bug.

Existing concurrency bug detection techniques cannot precisely identify the root
cause of failures. These techniques usually report all or some of the four distinct
patterns shown in the first column of Table 2.2 after the four executions. For instance,
all patterns will be reported after the third execution because they all appear in the
failing executions.

2.1.5 Frequent Itemset Mining

Frequent itemset mining is a sub-branch of data mining that focuses on looking at
sequences of actions or events. It has been widely adopted in different areas. The
basic idea of frequent itemset mining is to find all common sets of items. Those
itemsets should exists at least a minimum amount of times. An example of a set of
items would be grocery items bought in a trolley. The algorithm scans the trolley
multiple times, and find the items that occur more frequency in each trolley than a
given threshold. The number of occurrence is called support, and the threshold is
called the minimum support.

We applied frequent itemset mining on the traces we collected from the fault
localization phase. In our case, the interleaving patterns found by each run is like the
grocery items we put in each trolley.

A frequent itemset is an itemset that appears in at least minimum support (min-
sup) items from the trolley. A frequent maximal itemset is a frequent itemset that is
not included in a proper superset that is a frequent itemset.

There are a few different approaches in frequent itemset mining. We chose the FP
Maximal (FP-Max) approach to mine the frequent patterns as it is more efficient than
the others. FP-Max uses frequent-pattern tree to represent the frequent items. It
applies the divide and conquer strategy by dividing the data into a set of conditional
data, and mined each of them separately. This reduces the searching time.

One of the important factors in FP-Max is the support. The support is a value
to demonstrate how frequently the itemset occurs in the dataset. The support of X
with respect to I is defined as the proportion of items 7 in the dataset which contains
the itemset X. Table 2.3 shows an example.

{iel; X Ci}|
1|

SUP(X )=
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Table 2.3: Frequent Itemset Mining Suport Example

test id | pattern 1 | pattern 2 | pattern 3 | pattern 4
1 0 0 0 0
2 1 1 0 0
3 0 0 1 0
4 0 0 0 1
) 0 0 1 0

Itemset X = { pattern 1, pattern 2 } has a support of 1/5 = 0.2. It appears in 1 out
of 5 tests (20%).

2.2 Related Work

There has been a great deal of work on testing and debugging concurrent programs.
In this section, we discuss the work most relevant to our own and contrast existing
methods to the Cadeco approach.

2.2.1 Fault Localization

Automated Fault Localization Automatic bug localization or automatic debug-
ging has been an active research area for over two decades [53|. Existing techniques
can be broadly categorized into two categories: dynamic [1] and static [22]. Generally,
dynamic fault localization techniques can localize bugs very precisely (such as at the
statement level). However, they require a test case suite and execution of the pro-
gram to gather passing and failing execution traces. Furthermore, the approaches are
computationally expensive. Spectrum-based fault localizations [1,30], dynamic slic-
ing [71], delta debugging [68| are some of the well known techniques in this category.
Our work focuses on spectrum-based fault localization.

Spectrum-Based Fault Localization Tarantula uses the coverage of statements
in the execution traces of failed and passed tests to compute the suspiciousness of
each statement [30]. The statements with the highest suspiciousness score must be
examined first when looking for the fault. If the fault is not found, the remain-
ing statements are examined in a non-increasing order of their suspiciousness scores.
Other approaches such as Pinpoint, AMPLE, and Ochiaii [2| adopt the general frame-
work of Tarantula but use different metrics to compute suspiciousness of statements.
All of these techniques use statistical analysis.

Roychowdhury et al. [49] use a machine learning technique for localizing faults
at the statement level. However, their technique does not study the effectiveness of
feature selection when applied to concurrent programs.

Concurrency Fault Localization There has been much research on fault localiza-
tion for concurrent programs [46,47,58,61,69|. For example, Wang et al. [61] identify

www.manaraa.com



shared memory access pairs that behave distinctively in failed and successful runs,
and pinpoint root causes using different test procedures. This technique targets order
violations and does not rank concurrency violation patterns. Park et al. [47] monitor
memory-access patterns associated with a program’s pass/fail results. CCI [29] ranks
only shared variable accesses (predicates) and thus provides less contextual informa-
tion. Both techniques then use statistical debugging to report data access patterns
with suspiciousness scores. The main distinction of Cadeco is that it takes advantage
of machine learning techniques for handling high dimensional data and studies the
cost-effectiveness of using different methods to rank concurrency violation patterns.

Concurrency Fault Detection There has been much research on detecting con-
currency violation patterns, involving data races [14,44]|, atomicity violations [40,70],
and order violations [21,34]. However, as described in Chapter 1, these techniques
target a specific type of bug. In addition, they may either report many false positives
or do not rank patterns based on their suspiciousness.

2.2.2 Context-Aware Debugging

Context-Aware Debugging There has been some work on context-aware debug-
ging [8,9,23,28]. Jiang et al. [28] use bug predictors and traverse the program’s
control flow graph to identify faulty control flow paths. However, they are not work-
ing on concurrent programs. Chilimbi et al. |9] apply statistical debugging and use
path profiles to perform bug isolation. However, these techniques focus on sequen-
tial programs and do not track data or control flow across multiple threads. Cheng
et al. [8] propose a discriminative graph mining algorithm for identifying bug signa-
tures, which are on block and method level. Different from Cadeco, they use two
sets of graphs as input from correct and faulty executions and search for a subgraph.
In Cadeco, we use a full graph and frequent faulty patterns to search for possible
paths. Griffin [45] is the most closely work to Cadeco — it first collects concurrency
inter-thread read-write patterns and then generates a sequence of methods containing
these patterns. However, the execution context output by Griffin is coarse-grained
(i.e., method) and may not provide enough information. In addition, Griffin provides
context only within individual threads and does not describe the execution flow across
multiple threads.
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Chapter 3 Concurrency Fault Localization Using Feature Selection

3.1 Introduction

In this chapter, we present a fault localization technique using feature selection for
conncurrent programs. We hypothesize that the problem of fault localization based
on data access patterns can be formulated into feature selection [18| used in machine
learning, in which a subset of features is selected from all features to improve the
prediction accuracy. In concurrency fault localization, the concurrency data access
patterns can be formulated as features, so the problem can be viewed as selecting
the access patterns that are likely to predict the failing executions. We conjecture
that there are certain benefits of using a machine learning-based approach to localize
concurrency because code coverage data is generally high dimensional data. A new
failing /passing execution can provide additional information, where the data access
pattern with maximum information diversity is most suspicious [49]. We evaluate the
effectiveness and efficiency of our approach by comparing it to existing techniques.

3.2 Approach

Our technique for localizing concurrency faults consists of two major steps. In the first
step, Cadeco monitors memory accesses and synchronization operations at runtime
and detects concurrency violation patterns. The patterns are associated with passing
and failing executions. Cadeco employs two strategies for gathering patterns. First,
Cadeco explores different interleaving schedules for each input to maximize the di-
versity of patterns being covered. Since concurrent programs are non-deterministic,
failures can be exposed in different executions under the same test input. To do
this, Cadeco uses bytecode instrumentation to inject delay points before or after the
shared variables. Second, Cadeco studies the effectiveness of a test case reduction
technique in fault localization by removing traces containing the same concurrency
violation patterns. Yu et al. [67] study the differences between the effectiveness of
several fault-localization techniques on the unreduced and reduced test suites. How-
ever, their study does not target concurrent programs. Our evaluation shows that
the impact of test case reduction on fault localization is negligible.

In the second step, Cadeco applies feature selection algorithms to identify patterns
that have the most discriminative power in predicting the failing executions. Our
intuition is that there exists a commonality between the concepts of feature selection
and concurrency fault localization. Specifically, concurrency bug patterns can be
viewed as features and the concurrency violation patterns covered in all executions
are generally high dimensional data. The output is a list of suspicious patterns with
their scores ranked from the highest to lowest.

10
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3.2.1 Feature Selection

Our feature selection algorithm takes as input a set of passing and failing executions
generated by exercising N test inputs together with their interleavings on the faulty
program. Cadeco builds a coverage matrix, where each row indicates the identifier
of an execution and each column indicates a unique concurrency bug pattern. The
value of a matrix cell X|i, j| is 1 if pattern j is covered in the i execution and 0
otherwise. An execution is labeled “P” if the corresponding execution is passed and
“F” otherwise. The set of labeled executions are then given to a feature selection
algorithm and the output is a ranked list of patterns (i.e., features) with respect to
their distinctive characteristics.

Cadeco improves the feature selection method by adding a relevance variable for
measuring how closely related a pattern is to a failing/passing execution [35|. This is
done because standard feature selection does not distinguish between patterns that
characterize one class (e.g., failing) from those that characterize the other class (e.g.,
passing). Two patterns can both have high feature scores but characterize different
classes. We use the following function to calculate the relevance:

L e ® > e
. ’ ns(e)+ns(e np(e)+np(e
Relevance(e) = Mr(e) np(e)

T ng(e)tng (@) = nple)t+ny(e)

Here, e denotes a bug pattern and Relevance(e) determines to which class (i.e.,

fail or pass) e is closer. Mgff(i)f@ is the ratio between the number of failing executions
containing e and the total number of executions. A higher ratio indicates a stronger
tie between e and the failing executions. #% is the ratio between the number

P P

of passing executions containing e and the total number of executions. A higher ratio

indicates a stronger tie between e and the passing executions. If Mgff% is greater
than L),, e is closer to the failing executions, so the relevance score of e is +1.

”p@e)‘*‘np(@) .
Otherwise, the relevance score of e is -1.

3.2.2 Cadeco Fault Localization Algorithm

Algorithm 1 shows Cadeco’s feature selection algorithm for localizing faults. The
algorithm takes the program P and a set of test inputs 7T as input and outputs a
ranked list of concurrency bug patterns sorted by their likelihood to be faulty. P’ is
the instrumented program, SV is a set of shared variables, TR is a set of execution
traces, and PT'R is the predefined concurrency patterns. The algorithm executes
each test input on P’ to obtain traces (Line 2). Since the instrumentation point is
inserted before and after each shared variable SV and the conditional synchronization
operation S, the total number of execution traces is 2*|T| x |SV + S|. Next, the
algorithm builds the coverage matrix to organize the data for feature selection (Line
4). Tt then runs a feature selection algorithm to compute the feature score for each
pattern (Line 5). By using our enhanced algorithm, the feature score for a pattern

11
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Algorithm 1 Concurrency fault localization using feature selection
Require: P, T
Ensure: RL
: P’ < Instrument (P, SV)
TR < execute T on P’ to gather execution traces
PTR < concurrency bug patterns
D < BuildCovergeMatrix (TR, PTR)
S < FeatureSelection (PTR, D)
for each p in PTR do
scfore < S[p| x Relevance(p)
M .add(score)
end for
RL < sort(M) return RL

,_.
@

is the product of the standard feature score and the relevance score of the pattern
(Line 7). The relevance score is dynamically adjusted to reflect how close a pattern
is to the failing execution.

The algorithm sorts patterns in descending order of feature scores (Line 10). Pat-
terns that appear at the beginning of the ranked list are the ones with the highest
feature scores among features that are closer to the failing class. Patterns that ap-
pear at the end of the ranked list are the ones with the highest feature scores among
features that are closer to the passing class. Finally, the algorithm returns the ranked
list of patterns.

3.3 Implementation

We implemented Cadeco Fault Localization in Java. The first component of Cadeco
is the instrumentation and monitoring component, which is implemented on top of
the Soot instrumentation framework [59]. Cadeco instruments the shared variables.
In Java, shared variables can be identified by using thread escape analysis [33,50]; we
adopted the conservative shared variable detection algorithm proposed previously [24]
that uses the ThreadLocalObject Analysis API [20] provided by Soot [56] to compute
variables that can potentially be read from and written to by multiple threads simul-
taneously. We also used the alias analysis [43] provided by Soot to identify a set of
escaping variables that can potentially access the same location.

Cadeco injects artificial delays before and after each shared variable to increase
the chance of exposing concurrency bugs. In the monitoring phase, Cadeco collects
memory-access information generated from executing multiple threads. The accesses
are then extracted for patterns [47]. To achieve this, we defined a fixed-size window
for each shared-memory location. Every time there is an access (e.g., Read, Write) to
the shared-memory location, it records and updates the window. When the window is
full, and there is a new access to the shared-memory location, we extract the patterns
from the window if one or more patterns are found. Then, we eliminate the oldest
entry and shift the entries in the window, so that the new access can be recorded.

12
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Figure 3.1: Implementation Overview

The second main component of Cadeco computes a feature score for each pattern
(Section 3.2.1) and reports the list of ranked patterns in a text format. Feature
selection is implemented using the Weka toolkit [19].

Cadeco is developed and implemented using several libraries and tools in Java.
It is divided into several components and each of them serves different purposes and
runs in different phases.

3.3.1 Source Code Sanitation and Re-formatting

To obtain more information from the source code, such as the line number and the line
of code, we have to align the source code writing style, and remove unnecessary lines
such as comments or dummy codes in the source code. We used an open source library
"Java Comment Preprocessor (java-comment-preprocessor)" [26] to pre-process the
original source code files and output them to a folder.

Then, we used the "Google Java Formatter (google-java-format)" [16] to format
the source code, so that the coding style and the formatting of the source codes are
consistent.

3.3.2 Locating Shared Variables

Since concurrency bugs usually involve shared variables, we would like to find out
where the shared variables are located in the source codes. To achieve that, we ex-
tended a tool, "LEAP: Lightweight deterministic multiprocessor replay for concurrent
Java programs" [36], to help locate the shared variables and retrieve details such as
the line number, source file name, variable type, and the operation.

3.3.3 Source Code Instrumentation

In order to increase the diversity and the chance of bugs exposure, we perform static
code instrumentation before running the analysis.

13
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We have implemented a small utility with the help of an open source library
namely "Java Parser (javaparser)" [25].

Since we have the sanitized version of the source code and the location of the
shared variables, we can edit and instrument the source code file one by one. For
each identified shared variable, we load up the sanitized source file. We then copy
the content of the sanitized source file, add a sleep point before and after the shared
variable line number, and output to a new file. The process generates two new files,
which we use as the sources in the interleaving patterns capturing phase.

3.3.4 Interleaving Pattern Capturing

To find out the interleaving patterns, we implemented and extended the tool Cal-
Fuzzer, an extensible Active Testing Framework for Concurrent Programs. CalFuzzer
depends on Soot, a framework for analyzing and transforming Java and Android Ap-
plications. We used the concept mentioned in the Falcon paper and implemented
through CalFuzzer.

We added a new class to record several operations on the variables, such as read,
write, wait, and notify. Each time there is an above-mentioned operation, the oper-
ation would be captured and stored in a defined window. Whenever that window is
full, we would analyze the captured operations in the window, and check if they match
any interleaving patterns (mentioned in the Falcon paper). We recorded down all the
matched patterns, as they may be the possible patterns that caused the failures.

We run all the test cases of each test subject multiple times and stored the results
into the database for report generation and input generation use.

3.3.5 Report Generation

In the next phase, we used our tool to retrieve the patterns from the database and
analyze them. Based on different criteria and needs, we generated several sets of data
and output them to a csv file. Examples of them are the interleaving patterns that
appear in all cases and fail cases, interleaving def-use pattern, etc. Each report would
list the patterns that are found suspicious, together with their scores and rankings.
We used the formula from the Falcon paper as one of the scoring algorithms.

3.3.6 Input Generation for Feature Selection

In order to apply machine learning feature selection technique to locate the suspicious
patterns, we need to convert our data to a format that the machine learning tool can
recognize and support.

We used "WEKA" [62], one of the popular data mining tools in Java, to help
us analyze and calculate the score of the patterns. We retrieved the data from the
database and output them into a csv file that follows Weka input requirement.

14
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3.3.7 Input Generation for Data Mining

Besides feature selection, we also applied data mining techniques to find suspicious
interleaving patterns that may lead to fault. We applied frequent itemset mining
technique with the help of "SPMF" [57|, which is an open-source pattern mining
library written in Java.

We retrieved the interleaving patterns of def-use pairs from the database, and
output them into a csv file that follows SPMF input requirements. More will be
discussed in Chapter 4.

3.3.8 Weka Data Mining

We used several feature selection algorithms. They are: Chi-Square Attribute evalua-
tion (CH), Gain-Ratio Attribute evaluation (GR), Information-Gain Attribute evalu-
ation (IG), Relief Attribute evaluation (RF), and Symmetrical Uncertainty Attribute
evaluation (SU). Weka provided the above mentioned algorithms in their library. We
applied the algorithms to suspicious interleaving patterns and obtained their rankings.
Then, we consolidated the results and exported them into a csv file. The interleaving
patterns with the highest ranking scores are listed in descending order.

3.3.9 Challenges
Bug Replication

We tried to use the test subjects mentioned in the related papers. However, some
of the test subjects were either outdated, or unable to replicate the bug because the
description was not detail enough or the information was incorrect. As a result, we
had to debug the test subject ourselves, which was quite time consuming and difficult.

Bug Exposing

In order to increase the chance of exposing the bug, we run the benchmark programs
with different parameters. For example, we increased the number of threads when
running the program. We injected the sleep point before and after the shared variable,
with different sleep time.

Tools dependencies

Our tool was integrated with multiple tools and libraries, which speeded up our
development time. However, these libraries brought us problems when we tried to
implement and glue them together. One of the problems was the version compatibil-
ity. For example, two of our tools, Calfuzzer and LEAP, depends on different versions
of Soot, and Soot only supports Java 1.6 at the time of our development. On the
other hand, the libraries we used to sanitize our source code, i.e. Java Comment
Preprocessor and Google Java Formatter, required Java 8, and thus we could not put
them to run altogether. To resolve this incompatibility issue, we had to separate the
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process into different phases, and run them one after one. This increased the overall
run time.

Another issue was that there were some limitations in the frameworks in terms
of functionality. We had to work around or enhance the function that was missing.
Moreover, we found a few bugs in the frameworks that we had to fix ourselves or
request the latest updates from the authors.

Verification

In order to know the occurrence of the bug, we need to understand the test subjects
and their behaviors.

3.4 Evaluation

3.4.1 Objects of Analysis

We chose 10 open source benchmark programs, which are representative of real-
world code and have been widely used in academic research. These included two
objects downloaded from the Software-artifact Infrastructure Repository (SIR) [10],
five objects from the Java Development Kit (JDK), and three larger objects [7,37,48|.
The objects include both closed code units (code units equipped with test drivers)
and open code units (libraries that require test drivers to close them).

Among the closed objects, Account is a banking program that simulates deposit
and withdraw actions, Airline is an airline ticketing program, Pool is an Apache
library that provides an object-pooling API and a number of object pool implemen-
tations, and Log4j is a Java logging application. Among the open objects, Cache4j
is a cache for Java objects with a simple API and fast implementation. Arraylist,
Bitset, HashMap, Hashtable, and Vector are synchronized collection classes provided
by the JDK.

To address our questions, we required test inputs. Cadeco uses test inputs that are
supplied with the programs. To increase the the diversity of coverage data involving
concurrency violation patterns, Cadeco uses the instrumentation method described
in Section 3.2.2 to collect execution traces.

Each of the benchmark programs contains a known concurrency bug. Each bug
may be associated with one or more concurrency violation patterns.

We consider the following research questions:

RQ1: How effective is Cadeco at localizing concurrency faults?

RQ2: How efficient is Cadeco at localizing concurrency faults?

RQ3: How does Cadeco compare to a state-of-the-art approach?

RQ4: How does test case reduction impact the effectiveness of fault localization?

RQb5: How effective are different feature selection techniques at localizing concurrency
faults?

RQ1 and RQ2 let us consider the overall effectiveness and efficiency of Cadeco in
localizing concurrency faults. RQ3 lets us compare Cadeco to a baseline approach
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based on statistical analysis. RQ4 lets us compare the effectiveness of concurrency
fault localization using different feature selection techniques. RQ5 lets us investigate
whether reducing the number of tests runs impacts the effectiveness of concurrency
fault localization.

3.4.2 Variables and Measures

This section describes the independent variable and the dependent variables.

Independent Variable

Our independent variable involves the fault localization techniques used in our study.
We use Falcon as the baseline for comparison with our Cadeco. We chose Falcon
because it is the most relevant to our approach. However, Falcon uses statistical
fault localization (described in Section 2.1.1); it does not study the cost-effectiveness
of using machine learning-based methods for handling high dimensional coverage
data. Another spectrum-based fault localization technique for concurrent programs
is CCI [29]. However, CCI gathers predicate entities rather than patterns, so it only
ranks individual accesses. Previous study has also shown that Falcon outperformed
CCI in terms of ranking faulty elements. Therefore, we did not compare Cadeco to
CCL

Within Cadeco, we consider five feature selection methods: Chi-Square (CH),
Gain Ratio (GR), Information Gain (IG), Relief (RF), and Symmetrical Uncertainty
(SU). By default, Cadeco uses Symmetrical Uncertainty (SU), which performs the
best among all five methods. The implementations of these methods are available
in Weka [19]. This controlled experiment allows us to evaluate the performance of
different feature selection algorithms.

Within Cadeco, we also evaluate the effectiveness and efficiency of fault localiza-
tion with reduced execution traces. Our goal is to determine whether the number
of execution traces can be reduced to improve its efficiency with a minimal impact.
While research has shown that the composition of the test suite impacts the effec-
tiveness of fault-localization techniques [67|, previous research focuses on sequential
programs. To obtain a reduced set of traces, we filtered out and unified the traces that
have the same set of patterns. For example, if Trace; and Trace, contain Pattern,
and Pattern,, we count them as one trace.

Dependent Variables

We choose metrics allowing us to answer each of our five research questions.
Ranking effectiveness To evaluate how accurately Cadeco localizes concurrency
faults, we evaluate whether the correct answer (ground truth) is found and at which
rank (for effectiveness) for each subject. We also evaluate the effectiveness by mea-

suring the percentage of the program that must be examined to find the fault. This
metric is called ezpense [67], which is computed by the following equation.
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n
>, Rankp,
number of executable patterns

Expense=

For a program that contains multiple faulty access patterns, we calculate the Fxpense
by averaging the ranks of all faulty patterns. For example, if there is one faulty pattern
ranked in 2"¢ place among 100 patterns, the Ezpense is 0.02 (or 2%). If there are two
faulty patterns ranked 2"¢ and 3"¢, the the Expense is 0.025 (or 2.5%).

Ranking efficiency We measure the efficiency of Cadeco by computing the total
time it took for fault localizations, including traces collection, features selection,
and ranking calculation. When compared Cadeco to Falcon, the efficiency is almost
identical because the two techniques spend the same time on collecting the traces.
For Cadeco,.q, the efficiency is calculated using the total time of traces reduction,
features selection, and ranking calculation.

3.4.3 Threats to Validity

The primary threat to external validity for this study involves the representativeness
of our programs, bugs, and test cases. Other objects and test cases may exhibit
different behaviors and cost-benefit tradeoffs. However, we do reduce this threat to
some extent by using several varieties of well-studied open source code objects for
our study, and test inputs and event interleavings generated by practical approaches.
Since there are no standard benchmark suites for use in fault-localization of concur-
rency bugs, we used programs with known bugs.

The primary threats to internal validity for this study are possible faults in the
implementation of our approach and in the tools that we used to perform evaluation.
We controlled for this threat by extensively testing our tools and verifying their
results against smaller programs for which we could manually determine the correct
results. We also chose to use popular and established tools (e.g., Soot, Weka) for
implementing the various stages of our approach.

Where construct validity is concerned, our measurements of effectiveness and effi-
ciency of fault localization focus on the expense score and time required for analysis
and test execution. However, other costs such as developer time can play a role in
technique efficiency.

The faulty execution path that we found may not be a feasible path, as some
of the details had been abstracted. However, it could still help developers and give
better hints for them to locate the bugs in the program.

3.4.4 Results

We now analyze the results of our study relative to each of our research questions.

RQ1: Effectiveness

The goal of this study is to investigate how well our technique ranks patterns by
determining whether highly ranked patterns correspond to true bugs. We ranked the
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benchmark programs with their default number of threads and inputs. To overcome
nondeterminism, we executed each program 10 times.

Columns 2-7 in Table 3.1 summarize the results of the benchmark programs in
terms of effectiveness. Column 2 reports the highest rank of the concurrency viola-
tion patterns using the feature selection technique (i.e., Symmetric Uncertainty) in
Cadeco. Column 3 reports the number of patterns identified. Column 4 reports the
number of patterns appearing in at least one failing execution. Column 5 reports the
number of patterns appearing only in failing executions. Column 6 shows the highest
rank of the first pattern found by Cadeco that corresponds to a true violation; the
number in the parenthesis indicates the expense score. Column 7 reports the number
of patterns involving the faulty memory accesses or synchronization operations. For
example, the Account program has 31 patterns, among which 29 patterns appeared
in at least one failing execution, 19 patterns appeared only in failing executions, the
highest rank assigned by Cadeco to any pattern corresponding to a true bug was 1
with the expense score 25.8%, and the number of patterns related to the fault was
16.

As Table 3.1 shows, Cadeco ranked the true faulty pattern first in eight out of
10 programs. The results indicate that Cadeco is effective at localizing concurrency
faults. On Arraylist, Cadeco ranked the faulty pattern at the second place. We
initially suspected that the pattern ranked first was a concurrency fault that was
accidentally discovered during traces collection. However, by further examining the
data, we found that this pattern was related to a fault in the test driver, in which
the method sequences used in some unit tests were incorrect. This led to failing
executions even though the failures were not caused by a concurrency fault.

On program Pool, Cadeco ranked the true faulty pattern 8. Further investigation
revealed that the top seven patterns are related to shared variable accesses (patterns
1-8 in Table 2.1), but the true pattern is a deadlock pattern. Nevertheless, these
shared variable accesses ranked in the first place are actually synchronized by the
wait-notify operations and thus related to the deadlock. Therefore, this pattern can
still give insights for fault localization, if not directly.

RQ2: Efficiency

The goal of this research question is to investigate the efficiency of the Cadeco toolset
by computing the total time spent on localizing the fault and slowdown caused by
instrumentation. We computed the slowdown factor by comparing normal program
execution and Cadeco-instrumented program execution.

Columns 8-9 in Table 3.1 summarize the results, showing the total execution time
and the slowdown factor. Column 10 reports the number unique shared memory
locations. For example, when executed with the Cadeco toolset, program Account
spent 11 minutes on localizing the fault, including identifying shared variables, in-
strumentation, trace collection, running feature selection algorithms, and ranking.
The slowdown over execution without any instrumentation was 2.0. The Account
program has 13 shared memory locations.
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Table 3.1: Results of RQ1 and RQ2: Effectiveness and Efficiency of Cadeco

Program RQ1 (Effectiveness) RQ2 (Efficiency)
High, | # P | # Py | # P, Rank # I Time OH | # Loc

Account 0.516 | 31 29 19 1 (0.258) 16 11 mins | 2x 13
Airline 0.576 | 12 9 2 1 (0.125) 1 16 mins | 2.1x 9
ArrayList | 0.117 | 122 74 35 | 2(0.270) 15 39 mins | 3x 232
BitSet 0.859 | 100 61 27 | 1(0.140) 10 12 mins | 2.2x 117
HashMap | 0.94 | 133 | 114 93 1 (0.007) 9 26 mins | 2.2x 92
Hashtable | 0.981 | 51 30 7 1 (0.137) 5 393 mins | 2.7x 158
Vector 0.522 | 65 17 13 | 1(0.076) 5 48 mins | 2.2x | 70
Cache4j 0.364 | 50 50 15 1 (0.120) 4 38 mins | 2.1x 42
Log4j 0.181 | 67 62 10 | 1 (0.287) 4 281 mins | 2.8x | 199
Pool 0.39 | 196 | 144 50 | 8 (0.275) 6 194 mins | 2.7x | 167

High,=Highest suspiciousness score reported by the Symmetric Uncertainty
algorithm. # P—=Number of patterns identified. # Py=Number of patterns
appearing in at least one failure. # P,=Number of patterns appearing in failing
executions. Rank=Cadeco ranking (expense score). # F,=Number of faulty
patterns. OH=overhead of instrumentation. # Loc=Number of memory locations.

As the table shows, the time taken by Cadeco ranged from 11 minutes to 194
minutes, with an average of 105.8 minutes. The runtime overhead ranged from 2x
to 3x, with an average of of 2.4x. These results indicate that Cadeco s efficient at
localizing concurrency faults in real world applications.

RQ3: Comparison to Falcon

One of the most closely related studies of fault localization in concurrent programs
with a ranking scheme is Falcon [47]. Thus, the goal of this research question is to
compare the effectiveness and efficiency of Cadeco to Falcon.

For this study, we implemented Falcon in the Cadeco framework and applied it
to our benchmark programs. Columns 2-7 of Table 3.2 report the results of the two
techniques, including rank, time, and the number of traces. Since Falcon and Cadeco
utilize the same set of traces, the efficiency score we used for comparison includes only
the time spent on running the feature selection technique and ranking. For example,
on program Account, both Cadeco and Falcon report the true faulty pattern at rank
1. However, Falcon takes more time than Cadeco.

As the table shows, Falcon tends to rank individual accesses of a real concurrency
fault much lower than Cadeco in four out of 10 programs (i.e., ArrayList, Cache 4j,
Log 4j, and Pool). Falcon was not able to localize faults in Pool because it does
not handle deadlock. Also, Falcon takes 420% more time on average than Cadeco to
analyze the traces and complete the ranking. This observation suggests that Cadeco
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Table 3.2: RQ3 and RQ4: Comparing Cadeco to Falcon using Different Test Suites

Technique Cadeco Falcon Cadeco,qgs
Rank | Time | # traces | Rank | Time | # traces | Rank | Time | # traces

Account 1 531ms | 180 1 1s 180 1 487Tms | 41
Airline 1 472ms | 120 1 1s 120 2 408ms | 8
ArrayList 2 2.3s 1150 5 58 1150 2 688ms | 176
BitSet 1 652ms | 240 1 3s 240 1 508ms | 73
HashMap 1 696ms | 230 1 7s 230 1 539ms | 52
Hashtable 1 27s 4190 1 2m34s | 4190 1 801ms | 91
Vector 1 1.4s 320 1 15s 320 1 1.3s 55
Cached;j 1 1.3s 600 9 10s 600 1 1.1s 391
Log4j 1 12s 4100 4 3mb6s | 4100 1 915ms | 537
Pool 8 54s 3800 - 41s 3800 15 1.3s 91

Cadeco,.q;=Reduced traces. Rank=Rank of the bug. Time=Process time. #
traces=Number of traces analyzed.

is more effective and efficient at localizing concurrency faults than Falcon. The im-
provement is more obvious in larger programs.

RQ4: Impact of Test Case Reduction

The goal of this research question is to study whether reducing the number of traces
can impact the effectiveness and efficiency of Cadeco. Columns 8-10 of Table 3.2
report the results of the reduction technique, including the rank, the time spent on
reduction, data analysis, and ranking, and the ultimate number of traces.

As the table shows, Cadeco,.q; is less effective than Cadeco in terms of ranking in
two out of 10 programs (i.e., Airline and Pool). However, Cadeco,.q; improved the
efficiency over Cadeco on all benchmark programs, ranging from 7.69% to 4053.84%,
with 887.84% on average. The number of traces was reduced by a range of 34.83%
to 97.82%, with an average of 80.22%. These results indicate that test case reduction
can slightly affect the effectiveness of concurrency fault localization but can improve
its efficiency.

RQ5: Different Feature Selection Techniques

Table 3.3 shows the effectiveness of different feature selection methods in terms of
ranking scores. As the table shows, on four programs (i.e., Account, ArralyList,
HashMap, and HashTable), the five techniques are equally effective. On the other
programs, the Symmetric Uncertainty (SU) technique and Information Gain (IG)
were better than at least one of the other four techniques on all benchmark programs.
Although SU and IG have the same average ranking score, based on the overall
performance and the results we analyzed, SU is slightly better than IG. In contrast,
Relief (RF) was the worst choice for concurrency fault localization in our experiment.
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Table 3.3: RQ5: Using Different Feature Selection Techniques

Program

Chi-Square

Gain Ratio

Info. Gain

Relief

Sym. U.

Account 1
Airline
ArrayList
BitSet
HashMap
Hashtable
Vector
Cached;j
Log4;j
Pool

’ Average \

= = O = = N W

CO| | W | =N DN =
O | W RN~~~
O | =R =R =N N =
(o N S R e e Il B N R ey

12
| 3.0 |

21 | 23 | 19 19 |

Info. Gain=Information Gain Sym. U.=Symmetric Uncertainty

If we generalize these results with other subjects, we can conclude that when
using feature selection to localize concurrency faults, Symmetric Uncertainty is the
best choice, whereas Relief is the worst.

3.5 Discussion and Summary

3.5.1 Discussion

We demonstrated in the previous section that Cadeco is useful for localizing concur-
rency faults. Specifically, we showed (subject to stated threats to validity) that 1)
Cadeco is more effective and efficient at localizing concurrency faults than a state-
of-the-art spectrum-based concurrency fault localization technique; 2) Reducing the
number of traces can impact the effectiveness of fault localization to a small extent,
but can improve its efficiency; and 3) Symmetric Uncertainty (SU) is the most effec-
tive feature selection technique in localizing concurrency faults.

Our results have implications for practitioners and researchers, as discussed below.

Implications for Practitioners

Results indicate that certain feature selection techniques are more effective and effi-
cient than statistical analysis techniques in concurrency fault localization. Practition-
ers can apply this finding by collecting coverage data involving concurrency violation
patterns and using the Symmetric Uncertainty (SU) technique to localize the root
cause (i.e., patterns) of the concurrency fault. In addition, our results showed that
test case reduction can improve the efficiency of Cadeco while affecting the effective-
ness only to a small degree. Therefore, in relation to large amounts of coverage data,
practitioners can reduce the number of execution traces to achieve higher efficiency.
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Implications for Researchers

The use of coverage criterion. Our study uses existing test inputs against the
program under different interleavings to obtain execution traces. While the initial
study on the def-use coverage criterion is promising, further research is needed to
study the effectiveness and efficiency of fault localization under different concurrency
coverage criteria [38].

Localizing multiple faults. Our study focuses on concurrency faults only. It might
be useful to search for both concurrency faults and sequential faults simultaneously.
In addition to concurrency access patterns, more information (e.g., statements) might
be needed for the coverage data. Both concurrency access patterns and sequential ele-
ments can be formulated into features. Further research is needed to investigate what
additional information should be provided to developers for locating both sequential
and concurrency faults in a cost-effective way.

3.5.2 Summary

In this work, we propose an automated approach for fault localization in concur-
rent programs using feature selection. Cadeco fault localization consists of two steps.
In the first step, Cadeco employs dynamic analysis to identify patterns associated
with concurrency violation patterns. In the second step, Cadeco ranks these pat-
terns using feature selection methods based on passing and failing executions. Our
empirical study shows that Cadeco fault localization is highly effective in ranking
true fault patterns and efficient in storage and time overheads. Among five feature
selection methods, Symmetric Uncertainty (SU) is the most effective. Comparing to
the state-of-the-art spectrum-based concurrency fault localization techniques, Cadeco
fault localization is more effective in 40% of the benchmark programs and performs
equally well in the rest. We also study the impact of using test case reduction tech-
nique; the results indicate that the impact of reducing test cases based on shared
variable coverage is negligible.
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Chapter 4 Context-Aware Debugging for Concurrent Programs

4.1 Introduction

In Chapter 3, we presented our technique on localizing the root cause of a concur-
rency fault by ranking suspicious concurrency access patterns. Since our goal is to
help developers better understand the concurrency bug by providing possible faulty
execution paths within and across different threads, we present our approach and
details in this chapter. To analyze and reconstruct a faulty execution path, there are
two basic steps. First, we use a frequent itemset data mining algorithm to extract the
most frequent interleaving patterns in the failed executions. Then, we reconstruct the
faulty execution path from the program’s inter-thread inter-procedural control flow
graph by searching for paths that contain the mined frequent patterns.

We conduct an empirical study on ten real-world concurrent programs. The results
showed that our technique can find precise execution paths with low cost.

4.2 Approach

In this section, we describe the two steps of our approach in detail.

4.2.1 Frequent Concurrency Access Pattern Mining

We obtained the failing execution traces from the traces collected in Chapter 3. In
addition to the inter-thread def-use pairs, we collected the intra-thread def-use pairs.
Using these two kinds of def-use paris, we could guide the reconstruction of paths
within individual threads. Specifically, we monitored and recorded the read and write
accesses of the shared variables. We defined a fixed-size window to store the read write
accesses and extracted the pattern once the window is full. If the extracted patterns
fulfill the inter-thread def-use pattern, e.g., Write in Thread 1 Read in Thread 2
(W1R») or intra-thread def-use pattern, e.g., Write in Thread 1 Read in Thread 1
(W1R;) (subscript is the thread id), we saved them for later stage.

Table 4.1 indicates the inter-thread and intra-thread def-use pairs collected from
two test executions. Row 2 column 1 shows an example of an inter-thread def-use
pair. The record W1# Account.java#9 > R2# Account.java#14 can be interpreted
as: There is a Write operation in Thread 1 in Account.java line 9 (which is a def) and
a Read operation in Thread 2 in Account.java line 14 (which is a use) on a shared
variable. Row 5 column 1 shows an example of an intra-thread def-use pair. The
record W1# Account.java#9 > R1# Account.java#14 can be interpreted as: There
is a Write operation in Thread 1 in Account.java line 9 (which is a def) and a Read
operation in Thread 1 in Account.java line 14 (which is a use) on a shared variable.
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Table 4.1: Example of interleaving patterns for import

testcasel

testcase?

W14 Account.java#9 > R2# Account.java#14

W1#Account.java#9 > R2# Account.java#14

W1#Main.java#18 > R2#Main.java#52

W1#Main.java#18 > R2#Main.java#52

W1#Account.java#9 > R2# Account.java#14

W1#Account.java#18 > R2# Account.java#22

W1#Account.java#9 > R1# Account.java#14

W1#Account.java#9 > R1# Account.java#14

Next, we use the frequent itemset mining algorithm [17] to extract frequent inter-
leaving def-use patterns within threads and across threads. The patterns are used to
guide the search for faulty paths. Since the frequent itemset mining algorithm only
takes in matrices, we need to convert the def-use pairs into a matrix by assigning a
unique id to each of them. Specifically, we build a matrix where each row represents
a failure run and each column is mapped to an unique id. Table 4.2 shows an example
of the inputs to FP-Max converted from the patterns in Table 4.1. When applying
the frequent itemset mining algorithm, we use a support value 40%, which is a general
threshold value. This indicates that the itemsets have occurred in 40% of the total
traces are retrieved.

Table 4.2: Example of interleaving patterns for the process of FP-Max

testcase 1 |24 (16|81 9 | 15
testcase 2 | 2 4| 719 12| 15

Algorithm 2 shows the Cadeco’s frequent itemset mining algorithm. The algorithm
takes the interleaving def-use pairs (DU P) and support (S) as the inputs and outputs
a list of frequent patterns (F'P). It first converts the def-use pairs into a matrix (M)
(Line 1). Then, it finds the frequent itemset within M based on S (Line 2). Next, it
returns a list of frequent itemset (R) (frequent def-use pairs) in mapping id format.
We convert the mapping ids back to a list of frequent patterns F'P (Line 3). Table 4.3
shows the parsed result after converting from pattern id to the patterns in text.
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Algorithm 2 Frequent Itemset Mining
Require: DUP, S
Ensure: FP

1. M < ConvertToMatrix (DU P)

2: R < FP-Max (M, 5)

3: F'P < ConvertToPattern (R) return F'P

Table 4.3: Example of interleaving patterns FP-Max parsed results

freq. patterns 1

W1# Account.java#9 > R2# Account.java#14
W1#Main.java#18 > R2#Main.java#52
W1#Account.java#9 > R1#Account.java#14

4.2.2 Path Reconstruction

To reconstruct execution paths, we first build an inter-thread inter-procedural control
flow graph (IICFG). Each node in the graph represents a piece of a code block, which
consists of a sequence of code statements and the corresponding thread id. We need
a few pieces of information to build the IICFG, such as the CFG and the call graph
of the program and we use Soot to extract them. The execution of Soot is separated
into several phases. To achieve that, we implement a transformer and run it in a
particular phase in Soot. In Soot, a transformer is an object that transforms some
block of code to some other block of code. By implementing our own transformer,
we can retrieve the CFG and the call graph information of the program. A CFG
is made up of a set of different block graphs. We use the API provided by Soot
to obtain all the block graphs, starting from the entry point of the program to the
exit point of the program. Then, using the call graph, we eventually follow the flow
of how the methods are being called and extract the code blocks of the methods
one by one. When we run Soot on the test programs, we specify our transformer
in the phase so that Soot will automatically go through that phase during runtime.
As a result, we retrieve the CFG of the methods together with other corresponding
information. Since Soot cannot provide any information other than a method based
CFG, we output the CFG information of all visited methods to a file and use it to
build the IICFG later.
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Algorithm 3 Path Reconstruction
Require: CFG, CG, FIP
Ensure: Path
: IICFG « vulldlICFG (CFG, CG, FIP)
: for each fip in FIP do
n < BFS (IICFG, fip)
Path < matchAndColor (n, fip)
end for
return Path

S g

Algorithm 3 shows the abstract of our path reconstruction algorithm. We build
the ICFG using the graph data structure. Starting from the root node, which is
the entry point of the program, we find the neighbor nodes and insert them into the
graph. After all the nodes are inserted into the graph, we connect the nodes by adding
edges between them. The constructed graph is a directed graph that illustrates the
flow of the program. We build two of the same directed graphs and assign a thread
id to each of them to simulate the multi-thread environment. Lastly, we attach the
two ICFGs as the children of a root node and the IICFG is created.

Once the IICFG is created, we use the frequent concurrency access patterns - the
results we obtained from the frequent itemset mining to guide searching for faulty
paths from the IICFG. We traverse the graph using breadth-first search. Each node
of the graph is the code block containing the line number and the name of the source
code. An item in the frequent itemset pattern contains a def-use pair. When a def or
use in the frequent itemset pattern is found in the current node, we highlight it with
a color. We traverse the graph from the root to the end. When it is done, all the
nodes in the graph that contains the frequent itemset pattern would be highlighted
with a color. We can then find the path through the connected nodes and edges. We
output the IICFG to an image for visual verification.
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Figure 4.1: Context-Aware overview

4.3 Implementation

We implemented our approach in Java.

4.3.1 Frequent Itemset Mining

The frequent itemset mining (FP-Max) algorithm is implemented and provided as
a library in SPMF [57]. In order to use it, we need to convert our data into the
desired format and save in a csv file. We map the interleaving patterns with a
unique id. During the conversion, the mapping between the pattern and id is stored
in a mapping file. We run the SPMF application in the command line with the
corresponding arguments. Once SPMF has finished running, it outputs the results in
a csv file.  'We convert the content of the csv file back into the interleaving patterns
using the mapping file. Table 4.3 is an example of the final output.

4.3.2 Constructing IICFG

To construct the IICFG, we implement a phase in Soot by extending the
SceneTransformer. Since Soot has limited functions and cannot export the ICFG of
the programs, we need to implement our own class to extract the CFG and build the
ICFG and IICFG with the IICFG builder, which is another tool that we wrote. We
add functions in the SceneTransformer, so that it traverses the program and extracts
the block information of the methods at runtime. Then, we export the code block
graph and the corresponding information such as line number, branches, external
method calls of the test subjects. Once we have the code block graph information
exported, we import them into the IICFG builder. The IICFG builder, written in
Java 8, uses an open source library "JGraphT" [27] to generate the ICFG and IICFG,
based on the code block graph exported by our SceneTransformer.
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Test Subject Program
Code Block
Method Calls

Frequent itemset mining

Test Subject Program
Interleaving Patterns

l

Soot
Path Finder
[ SceneTransformer }

Possible faulty ‘
Execution Paths ICFG image

Figure 4.2: Implementation Overview

While creating the IICFG, we fill in the frequent itemset interleaving patterns to
add the cross edges.

Then, we export the graph in "DOT" format, which is a graph description lan-
guage, and use graphviz [15] to convert the "DOT" file into an image.
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T1__<test.Sample: void main(java.lang String[])>__Block #0
test.Sample 37---75

T2__<test.Sample: void main(java.lang.String[])>__Block #0
test.Sample 37---75

T1__<test.Sample: void accumerate(int)>__Block #0
test.Sample 30---30

Y

ccumerate(int)>__Block #1

T1__<test.Sample: void a
test.Sample 31---32

T2__<test.Sample: void accumerate(int)>__Block #0
test.Sample 30---30

T1__<test.Sample: void accumerate(int)>__Block #2
4

T2__<test.Sample: void accumerate(int)>__Block #1
test.Sample 34---3 -32

test.Sample 31--32

TI1__<test.Sample: void main(java.lang.String[])>__Block #1
test.Sample 75---75

T2__<test.Sample: void accumerate(int)>__Block #2
test.Sample 34---34

T2__<test.Sample: void main(java.lang String[])>__Block #1
test.Sample 75---75

Figure 4.3: Example output of the IICFG with the interleaving patterns
Block in blue is a write operation, while block in cyan is a read operation.
Red edge indicates the possible data flow that leads to the bug.

Figure 4.3 shows an IICFG of a sample program. The sample program initializes
two threads, i.e. T1 and T2. There is a shared variable defined (i.e. write operation)
at T1 test.Sample class, accumerate(int) method, block #1 (block in blue color) and
being used (i.e. read operation) at T2 test.Sample class, accumerate(int) method,
block #1 (block in cyan color). Since this is an inter def-use, it would be a potential
cause of an interleaving issue. The red edge indicates the possible data flow (def-use
operation) that may lead to the bug.

4.3.3 Challenges

First, there were issues when generating the IICFG of the test subjects due to the
limitation of the functionality and the bugs in the Soot framework, which required
extra time to investigate the cause of the issues and resolved them. Secondly, we
needed extra care when handling special cases such as loop and recursive calls, such
that the graph would not fall into an endless loop. Thirdly, some of the generated
IICFG were so large that contains 1000+ nodes, which would look complicated and
difficult to follow. Therefore, we had to minimize the number of nodes by abstracting
some of them and removing some unnecessary information, such as unused nodes or
unrelated methods. Fourthly, we had to match the line number of the source code
and the interleaving patterns. Whenever there are changes in the source code, we
have to re-run the whole process, which takes quite a lot of time.

4.4 Evaluation

We evaluate our approach and results in this section.
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4.4.1 Objects of Analysis

We used the results of the 10 open source benchmark programs from Cadeco Fault

Localization phase. Since each of the benchmark programs contains a known concur-

rency bug, we could gather the interleaving faulty patterns from the failing executions.
We consider the following research questions:

RQ1: How effective is Cadeco at extracting the possible execution paths?

RQ2: How efficient is Cadeco at extracting the possible execution paths?

4.4.2 Variables and Measures
Independent Variable

There are several independent variables in our experiment. The support value used
in frequent itemset mining is one of them. The CFG extracted from the program
remains the same every time we execute the tests.

Dependent Variables

The result of the frequent itemset mining depends on several factors: the support
value we feed into the frequent itemset mining algorithm; the interleaving patterns
captured; and filtered during Cadeco fault localization phase. Since support is an
indication of how frequently the itemset occurs in the dataset, changing the support
may give a different result set.

4.4.3 Threats to Validity

The primary threat to external validity is the abstraction when constructing the
IICFG and searching for the possible faulty execution path. In a complex program,
the IICFG is huge, and it is difficult to search paths within the graph. Thus, we try
to give an abstraction of the ICFG with a few strategies such as ignoring or skipping
unrelated nodes and visiting the node details only if a pattern exists within them.
We also noticed that some of the paths were not feasible as false positive paths may
be found in the graph. A path may be valid in the graph perspective, but not in a
program flow. We also assumed there is only one shared variable per line. However,
multiple shared variables could be found on the same line. Thus, the interleaving
patterns may not be pointing to the same shared variable.

4.4.4 Results
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Table 4.4: Frequent Intra and Inter Def-Use Pairs

Test subj.|Intra-DU|Inter-DU|Fq. Intra-DU|Fq. Inter-DU|% Code Exam.|# Faulty Paths
Account 6 7 6 3 65% 2
Airline 14 2 13 1 79% 2
ArrayList 13 15 10 4 3% 6
BitSet 19 13 14 4 14% 6
HashMap 40 15 13 11 2% 4
Hashtable| 21 21 20 10 3% 5
Vector 32 11 14 1 34% 3
Cached;j 7 14 7 6 4% 5
Logd] 30 53 30 23 5% 8
Pool 129 62 48 5 24% 6

Test subj.=Test Subjects

Intra-DU=Number of Intra def-use pairs
Inter-DU=Number of Inter def-use pairs

Fq. Intra-DU=Number of Freq. Intra def-use pairs

Fq. Inter DU=Number of Freq. Inter def-use pairs

% Code Exam.=Percentage of code examined

# Faulty Paths=Number of possible faulty execution paths

Table 4.4 shows the frequent intra and inter def-use pairs that our approach has
identified for each test subject program before and after frequent itemset mining.
There is an average of 75.2% reduced intra def-use pairs and 37.4% reduced inter def-
use pairs. This helps narrows down the number of patterns that we need to analyze
and examine. Column 6 shows the percentage of code examined in order to retrieve
the possible faulty execution paths. The lower the percentage, the more efficient it
is. Column 7 shows the summary of the results, including the number of possible
faulty paths we have identified. Take the test subject Account as an example: we
have identified two possible faulty paths that may lead to the bug. By following the
path suggested by Cadeco and reading the source code of the program, it turned out
that the problem exists and the path is correctly guiding the right direction to the
problem. For some of the larger programs, there are more of the possible faulty paths.
We have to examine them one by one as some of the paths may not be a valid or
feasible execution path in the program.

We identify the possible faulty execution paths from the generated output of the
I[TICFG. We search for the paths starting from the root node, which is the starting
point of the program. We color the nodes (i.e. code block) that contain the line of
the interleaving patterns while transversing the graph. Afterwards, we connect all
the nodes that match and find paths that could pass through them all.
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Table 4.5: Time needed for generating the results

Test subjects|Freq. Itemset Mining| CFG Extraction|IICFG Construction
Account 11ms 63s 5s
Airline 13ms 66s 6s
ArrayList 24ms 70s 7s
BitSet 16ms 68s 7s
HashMap 70ms 69s 6s
Hashtable 71lms 69s 8s
Vector 22ms 70s 7s
Cache4j 121ms 91s 32s
Log4;j 188ms 102s ols
Pool 212ms 119s 49s

Freq. Itemset Mining=Time used for Freq. Itemset Mining in seconds
CFG Extraction=Time used for CFG Extraction
IICFG Construction=Time used for IICFG Construction

Table 4.5 shows the time needed when running the frequent itemset mining, CFG
extraction, and IICFG construction. The time for frequent itemset mining is propor-
tional to the number of patterns identified. Also, for programs that have larger code
base, the time needed to extract the CFG and construct the ICFG would increase
accordingly.

An example of how to construct the control flow graph of a test subject is illus-
trated below:

Account{double amt){
/ this.balance = amt;

Main / ’ Results of Frequent Itemset Mining
y Account
£ deposit{double amt]
Account acc = new “°°”“‘(1°?:‘i_" ey :ﬁ:;,:b?.:e ;::“lt;{ Wiksirfaccount/Main. java#18 > R2Bsir/account/Main java#s2
acc deposit300), — } Wiisir/account/Account. javaitd > R1#sir/account/Account. javai22
' " WiHsir/account/Account javal 18 > R2#sir/account/Account. javai22
. , ccount . P . L
accwithdraw(100s —_ | | EELCL e amt) ( wl#s_lrfaccountfma!n. j_avanz-ﬂ H Ill#s!r," accauntrMa!n.!avaﬂz*J
" th - Wittsirfaccount/Main. javal24 > R 1#sir/account/Main.javaf33
double bal = acc.getBalance{); this.balance -= ami; .
’ } Wiksir/account/Account java# 14 > Ri#isirfaccount/Account. java#18
— Witsir/account/Main.javall 18 = R1#sir/account/Main javatd3
coun - = = .
double getBalance() { Wittsir/account/Account. javalt9 > R2#sirfaccount fAccount. javaild
return this.balance;
i

(b) Example results of frequent itemset min-
(a) Example code snippet (Account) ing (Account)

Figure 4.4: Requirements for building IICFG

Figure 4.4a shows the code snippet of one of the test subjects Account. In the
main method, there are four external method calls from the Main class to Account
class. They are: the constructor, deposit, withdraw and the get Balance.

Figure 4.4b shows the results after applying frequent itemset mining. They are
inter and intra def-use pairs captured in the failure executions.

33

www.manharaa.com



. 1 Main
. main|| : Black #6

T1 Main
main | <Block 15
T1 Account
initf): Block 40

T1 Main
rrainl) :Block 17

T1 A e
— depcsitl): Block 30T
T1 Account

Ti Account T2 Account
deposit]) : Block #) deposit() : Block #0 o T2 Account
withdraw(} : Block F0” withdrawi) : Block 20
T1 Account T2 Account T _— -
withdraw(} : Block 50 withdraw() : Block #0 “ta T1 Main
= = main() : Block 78

7 TAeesunt
2 ining) < Black 4o

— T2 Account
Seaes” depasitl): Block #0

coount

T1 Main
rnain() : Block 78

(b) Snippet IICFG of Account with faulty
(a) Snippet IICFG of Account data flow path in dotted line

Figure 4.5: Example of [ICFG

Figure 4.5a and 4.5b shows the snippet ICFG and the snippet of ICFG with data
flow path.

The program spawns two threads that would execute deposit and withdraw con-
currently. Since the shared variable in the Account class is not protected by the
synchronized keyword, the possible faulty data flow path is found.

4.5 Discussion and Summary

4.5.1 Discussion

As demonstrated in the previous section, our technique searches possible faulty ex-
ecution paths to help developers debug. We show the context of the possible faults
such as the source code, method calls, and the line numbers that may lead to the
bug. However, further study and tests should be conducted in order to improve the
efficiency and accuracy of the approach.

4.5.2 Summary

In this work, we propose an approach to look for possible bugs by using frequent
itemset mining from faulty interleaving pattern traces and the inter-procedural control
flow graph of the programs. Based on the interleaving patterns captured by Cadeco
in the fault localization phase and the code blocks that contain them in the IICFG,
we can search for the abstract faulty execution flow paths. Developers could use
the paths to locate or narrow down the root cause of the bug from the concurrent
programs.
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

We present Cadeco, a framework to assist developers in localizing concurrency bugs
by providing them the highly rated interleaving patterns, and the possible faulty
execution paths. The aim of our tool is to help developers understand and find out the
cause of the concurrency issues. There are two main important works in Cadeco: 1.
Capture the interleaving patterns and identify the possible faulty interleaving patterns
using a machine learning feature selection technique. 2. Apply frequent itemset
pattern mining to find the most frequent faulty interleaving patterns and simulate
the possible execution paths that lead to the bug through IICFG. By combining these
two works, we are able to retrieve and locate the highly suspicious concurrent bugs.

5.2 Improvement in Fault Localization

As future work, we will investigate the cost-effectiveness of fault localization under
different interleaving criteria. We will also study our techniques on localizing mul-
tiple faults including both sequential and concurrency faults. In order to improve
and increase the accuracy of Cadeco results, we can increase the number of analysis
samples and gather more traces by running more test subjects. We can also increase
the diversity and occurrence of the bug by running each test case multiple times
in each test subject and adjusting the schedule sleep time when instrumenting the
test subject, so that the bugs can be exposed in a higher chance. In addition, since
the number of running threads can affect the interleaving patterns captured in the
window, we can vary the window size when collecting and analyzing the operations
(i.e., read, write) on the shared variables, such that we may extract more different
patterns. We plan to perform additional experiments on more diverse subjects to
determine whether our technique generalizes.

5.3 Improvement in Context-Aware Debugging

There is much work to do in order to improve the result and practical usage.

The current algorithm only gives an overview and an abstract manner of the possible
faulty execution paths. It would be better to improve the algorithm to give a more
concise faulty execution paths.

There are a few features that would improve the usability of Cadeco. First, current
version of Cadeco works under command console. It would be more convenience if
it becomes a plugin for an IDE tool. Second, a guided search on the possible faulty
execution paths would be helpful as developers could look into the details step by
step. Third, an auto search function that finds and suggests the faulty execution
paths would be a helpful feature.
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Finally, we will perform a user study to evaluate the effectiveness of Cadeco, in
order to help us further improve the performance of Cadeco in helping developers
localize concurrency bugs.
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